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Noncommutativity and Transition Probability in 
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Using an operation that behaves as a noncommutat ive  conjuction in 
or thomodular  lattices, a way to define the transition probability for arbitrary 
quan tum logics is given. 

In  quan tum mechanics  there is a lattice structure that  appears  natural ly 
and it is that  o f  a complete orthomodular lattice. This is just a complete  
lattice (L, -<,.^, v) which satifies all of  the following: 

(I) There exists an o r thocomplement  •  L - ~ L  such that: 
(i) a - < b i f f b  l - < a  • 

(ii) (a~) • = a. 
(iii) a l v a = l .  
(iv) a ' ^a=O.  

(II)  Given a - < b  in L, then b = a v ( b ^ a  • or equivalently a =  
(avb~)Ab. This proper ty  is usually referred to as weak 
modular i ty .  

In Rom~in and Rumbos  (1982) it is a rgued that  if the implicat ion 
a ~ b = (a  ^ b ) v  a • k n o w n  in the literature as the Sasaki hook, is chosen 
in order  to turn L into an implicative lattice, then the best choice for the 
logical conjunc t ion  is the ampersand & defined by a & b = (a v b ' )  ^ b. It 
is not  hard  to see that  a & b <- c iff a -< b-~ c, so that  _ & b is left adjoint  
to b - > _ .  

It is wor th  ment ioning  that  & is neither commutat ive  nor  associative; 
actually it is only so when &--  ^ and this happens  if and only if L is a 
Boolean  algebra. For  a p r o o f  the reader is referred to Romfin and Rumbos  
(1991). 
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Another condition relating Booleaness of L to properties of  & is the 
following: 

Proposition. Let L be an orthomodular  lattice and b e L. The map _ & b 
preserves orthogonality (i.e., a • & b < (a & b) • Va e L) iff L is Boolean. 

Proof a •  • iff a • 1 7 7 1 7 7  ", 
but since a & b -  < b we have b •  < (a & b) • and weak modulari ty yields 
[ b ^ ( a & b ) ' ] v b ' = ( a & b ) •  thus a •  iff a•  • iff 
a & b - < a i f f a & b = a ^ b i f f L i s  Boolean. �9 

The ampersand behaves very much like a noncommutat ive analog of 
the usual meet in L Two elements a, b ~ L will be said to be compatible 
(denoted by a ~ b )  i f f a & b = a A b .  

In general, a quantum logic (Jauch, 1968) is a pair (L, S), where L is 
a complete or thomodular  lattice and S is a full set of  states. A state s ~ S 
is just a map s: L ~  [0, 1] satisfying: 

(i) s ( 0 ) = 0 ,  s ( 1 ) =  1. 
(ii) s (v  ai)=Y~s(ai) given ai<-aj - V i r  

Moreover,  S is full whenever s(a) <_ s(b) Vs ~ S ~ a <- b. 
I f  the Borel sets of  • are denoted as usual by ~ (R) ,  an L-observable 

(or just an observable when no confusion arises) is an L-valued measure 
based on ~ ( R ) ,  that is, a map  A: Y3(R)~ L such that A ( ~ ) = 0 ,  A ( R ) -  1, 
and A(i._J/3i) = ~ A(fli) given fli c~/3j = ~ for all i ~ j .  

The or thomodular  lattice associated with quantum mechanics is just 
the lattice of  closed subspaces of  a Hilbert space Y(, or equivalently, the 
lattice of  projection operators,  which will be denoted by ~(Y~). Note that 
when L = ~(W) ,  an observable is a spectral measure and by the spectral 
theorem these correspond exactly to the self-adjoint operators on Y(. In 
particular, the eigenvalues or possible measurements of  an observable  will 
always be real and they can form either a continuous set, if, for example,  
the observable is the position of  a particle, or a discrete set, if we are dealing 
with an observable such as energy. 

Given an observable A: ~ ( R )  ~ L, a state s: L ~  [0, 1], and a set fl c 
~ ( R ) ,  the number  s(A(/~))c  [0, 1] is interpreted as "the probabili ty that 
the observable A takes values in the set fl when the system is in the state s." 

I f  A and B are two observables, they are said to be compatible or to 
commute,  iff A(f l ) -~B(y)  for all fl, y ~  ~ (R) .  When L = ~ ( ~ )  and the 
observables are thought of  as self-adjoint operators,  then this is equivalent 
to AB = BA and so their product  (regular composit ion) is also an observable. 
This, of  course, happens only when A and B can be simultaneously diagonal- 
ized, that is, when an orthonormal  basis of  common eigenvectors can be 
found for A and B. 
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Again let L = ~(Y(); if ( . ,  �9 ) is the scalar product on ~ and ~/denotes  
the set of all unit vectors, a full set of states is given by 

S = {s,: ~(Y() ~ [0, 1]lu �9 ~/ and su(P) = (u, P(u))  VP �9 N(Y()} 

Note that if P is one-dimensional, say P = Pv, the projection onto the space 
generated by v �9 d#, then s,(P~)= [(u, v)[2. This is usually referred to as the 
transition probability between the states s,, and s~. 

If A and B are two self-adjoint operators or observables which are not 
compatible, then there exist vectors u, v �9 ag such that u is an eigenvector 
of A but not of  B and dually with v, thus ](u, v)12�9 (0, 1), that is, there is a 
nontrivial transition probability between the corresponding (eigen)states s, 
and s~. It is to be expected, then, that there should be a relationship between 
the noncommutativity of A and B and the transition probabilities of their 
noncommon (eigen)states. 

The quantum logic approach to the foundations of quantum mechanics 
(e.g., Jauch, 1968) deals with an arbitrary quantum logic (L, S). One of the 
problems with this description is that it is static since it offers no reasonable 
(or unreasonable!) definition of transition probability between states; a 
description of  this problem can be found in Gudder  (1978). Maczynski 
(1981) attempts to solve this problem by defining a "measure of noncommu- 
tativity" for the elements of L. Roman and Rumbos (1991), making use of 
the operation & discussed before, defined a simpler and conceptually clearer 
measure of noncommutativity; let us briefly describe it. 

Whenever (L, S) is a quantum logic and a, b �9 L, the eommutativity gap 
between a and b is defined as follows. 

Definition 1. A(a, b) = supers [s(a & b) - s(b & a)l. 

It is immediate from the definition that A satisfies: 

(i) A(a, b) = A(b, a). 
(ii) A(a, b) �9 [0, 1]. 

(iii) A(a, b) = 0 iff a ~ b. 

This definition can be easily extended to arbitrary observables as 
follows. 

Definition 2. Given A and B two L-observables, then the commutativity 
gap between them is given by 

A(A,B)=  sup A(A(E) ,B(F) )  
E, F e B ( R )  

If L =  ~ ( ~ )  it was shown in Romfin and Rumbos (1991) that A(a, b) = 
Ila s~ b - b & a II, where II" [I is the usual operator norm; also, if u, v ~ ~ with 
(u, v )~  0 and P~, P~ are the corresponding one-dimensional projections, 



930 Rumbos 

the following was proved: A(p,, pv)= ( 1 -  ](u, /))12) 1/2. This expression will 
be referred to as (*). 

Given a quantum logic (L, S), it is usually required that L be atomic 
and that there exists a bijection between the atoms of L and the pure states 
of S (s ~ S is pure iff s cannot be expressed as a convex combination of 
other elements of S). Whenever this happens we shall say that the quantum 
logic is desirable. Expression (*) above suggests the following definition: 

Definition 3. Let (L, S) be a desirable quantum logic, let a, b be two 
atoms of  L, and let sa, sb be the corresponding pure states. The transition 
probability between sa and sb, denoted by trp(sa, sb), is defined by 

{ ; - A ( a , b )  2 if a ~ b  • 
trp(s~, sb) = if a < b • 

It is this definition that I suggest toward the solution of the open 
problem posed in Gudder  (1978) mentioned above. 

Let us now go back to the case L =  ~ ( ~ ) .  Given A, B self-adjoint 
operators, their commutator [A, B ] =  A B - B A  is not self-adjoint, but the 
operator i[A, B] is. It is natural to ask whether, given u, v c q/ and p, ,  p~ 
the corresponding projections, there is any connection between II i[p,, p~] ]l 
and A(pu, p~). The answer is given by the next result. 

Theorem. Given Pu, Pv as above with (u,/)) r 0, we have that 

IIi[p=, p=][I a(pu, p,,)- 
I(u,/))1 

Expressing Pu and p~ in the orthonormal basis Proof. 

v-iv,  u)u 
e, = u, e2 - (1 - ] (u ,  V>I2) 1/2 

as in Romfin and Rumbos (1991) we have that 

p,, = (10 ~) and P~ = ((u, [(U' /))12 
v)(1-I(u, v)12) '/2 

so that Ili[pu, po]lt can be calculated as the 

iv, u ) ( 1 -  [(u, v}l:)'/:~ 
1 -I(u, v)] 2 ] 

largest eigenvalue of 
i(p, pv-p~pu). This is easily seen to be ](u, v)](1-[(u, v)]2) 1/2, where we 
recognize A(p,,  p~) as the right-hand side factor; we thus have that 
A(pu, p~)= ][i[pu, p~]]]/[(u, v)], which is the desired result. [] 

The advantage of defining the transition probability in terms of the 
commutativity gap A is that this can be done for more general quantum 
logics (L, S), where the notion of commutator does not even exist. 
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